среда, 2 октября 2019 г.

9 класс_Робот

1. 

Выполните задание.
На бес­ко­неч­ном поле есть го­ри­зон­таль­ная и вер­ти­каль­ная стены. Левый конец го­ри­зон­таль­ной стены соединён с ниж­ним кон­цом вер­ти­каль­ной стены. Длины стен неизвестны. В вер­ти­каль­ной стене есть ровно один проход, точ­ное место про­хо­да и его ши­ри­на неизвестны. Робот на­хо­дит­ся в клетке, рас­по­ло­жен­ной не­по­сред­ствен­но над го­ри­зон­таль­ной сте­ной у её пра­во­го конца. На ри­сун­ке ука­зан один из воз­мож­ных спо­со­бов рас­по­ло­же­ния стен и Ро­бо­та (Робот обо­зна­чен бук­вой «Р»).

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные непосредственно левее и правее вертикальной стены.
Робот дол­жен за­кра­сить толь­ко клетки, удо­вле­тво­ря­ю­щие дан­но­му условию. Например, для приведённого спра­ва ри­сун­ка Робот дол­жен за­кра­сить сле­ду­ю­щие клет­ки (см. рисунок).



Конечное рас­по­ло­же­ние Ро­бо­та может быть произвольным. При ис­пол­не­нии ал­го­рит­ма Робот не дол­жен разрушиться. Ал­го­ритм дол­жен ре­шать за­да­чу для про­из­воль­но­го раз­ме­ра поля и лю­бо­го до­пу­сти­мо­го рас­по­ло­же­ния стен.

Алгоритм может быть вы­пол­нен в среде фор­маль­но­го ис­пол­ни­те­ля или за­пи­сан в тек­сто­вом редакторе.






2.
Выполните задание.

На бесконечном поле имеются две одинаковые горизонтальные параллельные стены, расположенные друг под другом и отстоящие друг от друга более чем на 1 клетку. Левые края стен находятся на одном уровне. Длины стен неизвестны. Робот находится в клетке, расположенной непосредственно под верхней стеной.На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).
Напишите для Робота алгоритм, закрашивающий все клетки, расположенные ниже горизонтальных стен. Робот должен закрасить только клетки, удовлетворяющие данному условию. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рисунок).
Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для произвольного размера поля и любого допустимого расположения стен внутри прямоугольного поля. При исполнении алгоритма Робот не должен разрушиться. Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе. Сохраните алгоритм в текстовом файле.

 3.
Выполните задание.

На бес­ко­неч­ном поле име­ет­ся прямоугольник, огра­ни­чен­ный стенами. Длины сто­рон прямоугольника неизвестны. Робот на­хо­дит­ся внутри прямоугольника. На ри­сун­ке указан один из воз­мож­ных способов рас­по­ло­же­ния стен и Ро­бо­та (Робот обо­зна­чен буквой «Р»).
Напишите для Ро­бо­та алгоритм, за­кра­ши­ва­ю­щий нижние уг­ло­вые клетки. Робот дол­жен закрасить толь­ко клетки, удо­вле­тво­ря­ю­щие данному условию. Например, для приведённого выше ри­сун­ка Робот дол­жен закрасить сле­ду­ю­щие клетки (см. рисунок).
Конечное рас­по­ло­же­ние Робота может быть произвольным. Ал­го­ритм должен ре­шать задачу для про­из­воль­но­го размера поля и лю­бо­го допустимого рас­по­ло­же­ния стен внут­ри прямоугольного поля. При ис­пол­не­нии алгоритма Робот не дол­жен разрушиться, вы­пол­не­ние алгоритма долж­но завершиться. Ал­го­ритм может быть вы­пол­нен в среде фор­маль­но­го исполнителя или за­пи­сан в тек­сто­вом редакторе. Со­хра­ни­те алгоритм в тек­сто­вом файле.
 4.
Выполните задание.

Робот находится в левом верхнем углу огороженного пространства, имеющего форму прямоугольника. Размеры прямоугольника неизвестны. Где-то посередине прямоугольника есть вертикальная стена, разделяющая прямоугольник на две части. В этой стене есть проход, при этом проход не является самой верхней или самой нижней клеткой стены. Точное расположение прохода также неизвестно. Одно из возможных расположений стены и прохода в ней приведено на рисунке (робот обозначен буквой «Р»):
Напишите для Робота алгоритм, перемещающий робота в правый нижний угол прямоугольника (см. рисунок):
Алгоритм должен решать задачу для произвольного размера поля и любого допустимого расположения стен внутри прямоугольного поля. При исполнении алгоритма Робот не должен разрушиться. Алгоритм может быть выполнен в среде формального исполнителя или  записан в текстовом редакторе. Сохраните алгоритм в формате программы Кумир или в текстовом файле. Название файла и каталог для сохранения Вам сообщат организаторы экзамена.







5. Выполните задание.
На бес­ко­неч­ном поле име­ет­ся лестница. Сна­ча­ла лестница под­ни­ма­ет­ся вверх слева направо, потом опус­ка­ет­ся вниз также слева направо. Пра­вее спуска лест­ни­ца переходит в го­ри­зон­таль­ную стену. Вы­со­та каждой ступени — 1 клетка, ширина — 1 клетка. Ко­ли­че­ство ступенек, ве­ду­щих вверх, и ко­ли­че­ство ступенек, ве­ду­щих вниз, неизвестно. Между спус­ком и подъ­емом ширина площадки — 1 клетка. Робот на­хо­дит­ся в клетке, рас­по­ло­жен­ной в на­ча­ле спуска. На ри­сун­ке указан один из воз­мож­ных способов рас­по­ло­же­ния стен и Ро­бо­та (Робот обо­зна­чен буквой «Р») .
Напишите для Ро­бо­та алгоритм, за­кра­ши­ва­ю­щий все клетки, рас­по­ло­жен­ные непосредственно над лестницей. Робот дол­жен закрасить толь­ко клетки, удо­вле­тво­ря­ю­щие данному условию. Например, для приведённого выше ри­сун­ка Робот дол­жен закрасить сле­ду­ю­щие клетки (см. рисунок).
Конечное рас­по­ло­же­ние Робота может быть произвольным. Ал­го­ритм должен ре­шать задачу для про­из­воль­но­го размера поля и лю­бо­го допустимого рас­по­ло­же­ния стен внут­ри прямоугольного поля. При ис­пол­не­нии алгоритма Робот не дол­жен разрушиться, вы­пол­не­ние алгоритма долж­но завершиться. Ал­го­ритм может быть вы­пол­нен в среде фор­маль­но­го исполнителя или за­пи­сан в тек­сто­вом редакторе. Со­хра­ни­те алгоритм в тек­сто­вом файле.

6.

Выполните задание.

На бес­ко­неч­ном поле име­ет­ся го­ри­зон­таль­ная стена. Длина стены неизвестна. Робот на­хо­дит­ся свер­ху от стены в левом её конце. На ри­сун­ке при­ве­де­но рас­по­ло­же­ние Ро­бо­та от­но­си­тель­но стены (Робот обо­зна­чен бук­вой «Р»).

Напишите для Ро­бо­та алгоритм, за­кра­ши­ва­ю­щий все клетки, рас­по­ло­жен­ные выше стены на рас­сто­я­нии одной пу­стой клет­ки от стены, не­за­ви­си­мо от длины стены. Робот дол­жен за­кра­сить толь­ко клетки, удо­вле­тво­ря­ю­щие дан­но­му условию. Например, для приведённого выше ри­сун­ка Робот дол­жен за­кра­сить сле­ду­ю­щие клет­ки (см. рисунок).



Конечное рас­по­ло­же­ние Ро­бо­та может быть произвольным. При ис­пол­не­нии ал­го­рит­ма Робот не дол­жен разрушиться. Ал­го­ритм дол­жен ре­шать за­да­чу для про­из­воль­но­го раз­ме­ра поля и лю­бо­го до­пу­сти­мо­го рас­по­ло­же­ния стен.

Алгоритм может быть вы­пол­нен в среде фор­маль­но­го ис­пол­ни­те­ля или за­пи­сан в тек­сто­вом редакторе.





Комментариев нет:

Отправить комментарий