воскресенье, 14 января 2024 г.

Кодим в Кумире

 

Задание 1 15.1 Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может.



Выполните задание.

 На бесконечном поле имеется стена. Стена состоит из трех последовательных отрезков: вправо, вниз, вправо, все отрезки неизвестной длины. Робот находится в клетке, расположенной непосредственно сверху левого конца

первого отрезка. На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).

 Напишите для Робота алгоритм, закрашивающий все клетки, расположенные непосредственно правее второго отрезка и над третьим. Робот должен закрасить только клетки, удовлетворяющие данному условию. Например, для приведенного выше рисунка Робот должен закрасить следующие клетки (см. рис.).

 Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для произвольного размера поля и любого допустимого расположения стен внутри прямоугольного поля. При исполнении алгоритма Робот не должен разрушиться.

 Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе.

 Задание 2.   15.1 Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может.

 Выполните задание.


На бесконечном поле есть горизонтальная и вертикальная стены. Правый конец горизонтальной стены соединен с нижним концом вертикальной стены. Длины стен неизвестны. В каждой стене есть ровно один проход, точное место прохода и его ширина неизвестны. Робот находится в клетке, расположенной непосредственно над горизонтальной стеной у ее левого конца. На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные непосредственно выше горизонтальной стены и левее вертикальной стены. Проходы должны остаться незакрашенными. Робот должен закрасить только клетки, удовлетворяющие данному условию. Например, для приведенного выше рисунка Робот должен закрасить следующие клетки (см. рис.).

При исполнении алгоритма Робот не должен разрушиться, выполнение алгоритма должно завершиться. Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для любого допустимого расположения стен и любого расположения и размера проходов внутри стен. Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе. Сохраните алгоритм в текстовом файле.

  3.  Выберите ОДНО из предложенных ниже заданий: 15.1 или 15.2.

 Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может. У Робота есть девять команд.

 Выполните задание.


На бесконечном поле имеются две одинаковые горизонтальные параллельные стены, расположенные друг под другом и отстоящие друг от друга более чем на 1 клетку. Левые края стен находятся на одном уровне. Длины стен неизвестны. Робот находится в клетке, расположенной непосредственно под верхней стеной.На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные ниже горизонтальных стен. Робот должен закрасить только клетки, удовлетворяющие данному условию. Например, для приведенного выше рисунка Робот должен закрасить следующие клетки (см. рис.).

Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для произвольного размера поля и любого допустимого расположения стен внутри прямоугольного поля. При исполнении алгоритма Робот не должен разрушиться. Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе. Сохраните алгоритм в текстовом файле.

 

Комментариев нет:

Отправить комментарий