воскресенье, 16 января 2022 г.

8 класс

 1. Выберите ОДНО из предложенных ниже заданий: 15.1 или 15.2.

 

15.1 Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может.

У Робота есть девять команд. Четыре команды — это команды-приказы:

вверх вниз влево вправо

При выполнении любой из этих команд Робот перемещается на одну клетку соответственно: вверх ↑ вниз ↓, влево ← , вправо →. Если Робот получит команду передвижения сквозь стену, то он разрушится.

Также у Робота есть команда закрасить, при которой закрашивается клетка, в которой Робот находится в настоящий момент.

Ещё четыре команды —  это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:

сверху свободно  снизу свободно  слева свободно  справа свободно

Эти команды можно использовать вместе с условием «если», имеющим следующий вид:

 

если условие то

последовательность команд

все

 

Здесь условие — одна из команд проверки условия. Последовательность команд — это одна или несколько любых команд-приказов. Например, для передвижения на одну клетку вправо, если справа нет стенки, и закрашивания клетки можно использовать такой алгоритм:

если справа свободно то

вправо

закрасить

все

 

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

 

если (справа свободно) и (не снизу свободно) то

вправо

все

 

Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:

 

нц пока условие

последовательность команд

кц

 

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

 

нц пока справа свободно

вправо

кц

 

Выполните задание.

На бесконечном поле имеются четыре стены, соединённые между собой, которые образуют прямоугольник. Длины стен неизвестны. В левой вертикальной стене есть ровно один проход, в нижней горизонтальной стене

также есть ровно один проход. Проход не может примыкать к углу прямоугольника. Точные места проходов и ширина проходов неизвестны. Робот находится около нижнего конца левой вертикальной стены, снаружи прямоугольника и выше нижней стены. На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).

 

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные вдоль стен прямоугольника с внутренней стороны. Проходы должны остаться незакрашенными. Робот должен закрасить только клетки, удовлетворяющие данному условию. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рисунок).

 

 

При исполнении алгоритма Робот не должен разрушиться, выполнение алгоритма должно завершиться. Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для любого допустимого

расположения стен и любого расположения и размера прохода внутри стены. Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе.

 

 

 

 

 

 

 

 

15.2 Напишите программу, которая в последовательности натуральных чисел определяет минимальное чётное число.

Программа получает на вход количество чисел в последовательности, а затем сами числа. В последовательности всегда имеется чётное число. Количество чисел не превышает 1000. Введённые числа не превышают 30 000.

Программа должна вывести одно число — минимальное чётное число.

 

Пример работы программы:

 

Входные данныеВыходные данные

4

3

20

6

8

6

2. Выберите ОДНО из предложенных ниже заданий: 15.1 или 15.2.

 

15.1 Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может.

У Робота есть девять команд. Четыре команды — это команды-приказы:

вверх вниз влево вправо

При выполнении любой из этих команд Робот перемещается на одну клетку соответственно: вверх ↑ вниз ↓, влево ← , вправо →. Если Робот получит команду передвижения сквозь стену, то он разрушится.

Также у Робота есть команда закрасить, при которой закрашивается клетка, в которой Робот находится в настоящий момент.

Ещё четыре команды —  это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:

сверху свободно  снизу свободно  слева свободно  справа свободно

Эти команды можно использовать вместе с условием «если», имеющим следующий вид:

 

если условие то

последовательность команд

все

 

Здесь условие — одна из команд проверки условия. Последовательность команд — это одна или несколько любых команд-приказов. Например, для передвижения на одну клетку вправо, если справа нет стенки, и закрашивания клетки можно использовать такой алгоритм:

если справа свободно то

вправо

закрасить

все

 

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

 

если (справа свободно) и (не снизу свободно) то

вправо

все

 

Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:

нц пока условие

последовательность команд

кц

 

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

 

нц пока справа свободно

вправо

кц

 

Выполните задание.

 

Робот находится в верхней клетке узкого вертикального коридора. Ширина коридора — одна клетка, длина коридора может быть произвольной. Возможный вариант начального расположения Робота приведён на рисунке (Робот обозначен буквой «Р»):

 

Напишите для Робота алгоритм, закрашивающий все клетки внутри коридора и возвращающий Робота в исходную позицию. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рисунок). Алгоритм должен решать задачу для произвольного конечного размера коридора. При исполнении алгоритма Робот не должен разрушиться. Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе.

 

 

 

 

 

 

 

 

 

15.2 Напишите программу, которая в последовательности натуральных чисел определяет количество чисел, кратных 3 и оканчивающихся на 2. Программа получает на вход количество чисел в последовательности, а затем сами числа. Количество чисел не превышает 1000. Введённые числа по модулю не превышают 30 000. Программа должна вывести одно число: количество чисел, кратных 3 и оканчивающихся на 2.

 

Пример работы программы:

 

Входные данныеВыходные данные

4

12

25

12

9

2

3. Выберите ОДНО из предложенных ниже заданий: 15.1 или 15.2.

 

15.1 Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может. У Робота есть девять команд. Четыре команды — это команды-приказы:

вверх вниз влево вправо

При выполнении любой из этих команд Робот перемещается на одну клетку соответственно: вверх ↑ вниз ↓, влево ← , вправо →. Если Робот получит команду передвижения сквозь стену, то он разрушится. Также у Робота есть команда закрасить, при которой закрашивается клетка, в которой Робот находится в настоящий момент.

Ещё четыре команды — это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:

сверху свободно  снизу свободно  слева свободно  справа свободно

Эти команды можно использовать вместе с условием «если», имеющим следующий вид:

если условие то

последовательность команд

все

 

Здесь условие — одна из команд проверки условия. Последовательность команд — это одна или несколько любых команд-приказов. Например, для передвижения на одну клетку вправо, если справа нет стенки, и закрашивания клетки можно использовать такой алгоритм:

если справа свободно то

вправо

закрасить

все

 

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

если (справа свободно) и (не снизу свободно) то

вправо

все

 

Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:

нц пока условие

последовательность команд

кц

 

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

нц пока справа свободно

вправо

кц

 

 

Выполните задание.

На бесконечном поле имеется вертикальная стена. Длина стены неизвестна. От нижнего конца стены вправо отходит горизонтальная стена также неизвестной длины. Робот находится в клетке, расположенной над правым краем горизонтальной стены. На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные правее вертикальной стены и примыкающие к ней. Робот должен закрасить только клетки, удовлетворяющие данному условию. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рисунок).

Конечное расположение Робота может быть произвольным. Алгоритм должен решать задачу для произвольного размера поля и любого допустимого расположения стен внутри прямоугольного поля. При исполнении алгоритма Робот не должен разрушиться, выполнение алгоритма должно завершиться. Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе. Сохраните алгоритм в текстовом файле.

 

 

15.2 Напишите программу для решения следующей задачи. Камера наблюдения регистрирует в автоматическом режиме скорость проезжающих мимо неё автомобилей, округляя значения скорости до целых чисел. Необходимо определить максимальную зарегистрированную скорость автомобиля. Если скорость хотя бы одного автомобиля была меньше 30 км/ч, выведите «YES», иначе выведите «N0».

Программа получает на вход число проехавших автомобилей N (1 < N < 30), затем указываются их скорости. Значение скорости не может быть меньше 1 и больше 300.Программа должна сначала вывести максимальную скорость, затем YES или NO.

 

Пример работы программы:

 

Входные данныеВыходные данные
4
74
69
63
66
74
NO

4. Выберите ОДНО из предложенных ниже заданий: 20.1 или 20.2.

 

20.1 Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может.

У Робота есть девять команд. Четыре команды — это команды-приказы:

вверх вниз влево вправо

При выполнении любой из этих команд Робот перемещается на одну клетку соответственно: вверх ↑ вниз ↓, влево ← , вправо →. Если Робот получит команду передвижения сквозь стену, то он разрушится.

Также у Робота есть команда закрасить, при которой закрашивается клетка, в которой Робот находится в настоящий момент.

Ещё четыре команды —  это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:

сверху свободно  снизу свободно  слева свободно  справа свободно

Эти команды можно использовать вместе с условием «если», имеющим следующий вид:

 

если условие то

последовательность команд

все

 

Здесь условие — одна из команд проверки условия. Последовательность команд — это одна или несколько любых команд-приказов. Например, для передвижения на одну клетку вправо, если справа нет стенки, и закрашивания клетки можно использовать такой алгоритм:

если справа свободно то

вправо

закрасить

все

 

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

 

если (справа свободно) и (не снизу свободно) то

вправо

все

 

Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:

 

нц пока условие

последовательность команд

кц

 

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

 

нц пока справа свободно

вправо

кц

 

Выполните задание.

 

На бесконечном поле есть горизонтальная и вертикальная стены. Левый конец горизонтальной стены соединён с нижним концом вертикальной стены. Длины стен неизвестны. В вертикальной стене есть ровно один проход, точное место прохода и его ширина неизвестны. Робот находится в клетке, расположенной непосредственно над горизонтальной стеной у её правого конца. На рисунке указан один из возможных способов расположения стен и Робота (Робот обозначен буквой «Р»).

 

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные непосредственно левее и правее вертикальной стены.

Робот должен закрасить только клетки, удовлетворяющие данному условию. Например, для приведённого справа рисунка Робот должен закрасить следующие клетки (см. рисунок).

 

 

Конечное расположение Робота может быть произвольным. При исполнении алгоритма Робот не должен разрушиться. Алгоритм должен решать задачу для произвольного размера поля и любого допустимого расположения стен.

 

Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе.

 

 

 

 

 

 

 

20.2 Напишите программу, которая в последовательности натуральных чисел определяет минимальное число, оканчивающееся на 4. Программа получает на вход количество чисел в последовательности, а затем сами числа. В последовательности всегда имеется число, оканчивающееся на 4. Количество чисел не превышает 1000. Введённые числа не превышают 30 000. Программа должна вывести одно число — минимальное число,

оканчивающееся на 4.

 

Пример работы программы:

 

Входные данныеВыходные данные

3

24

14

34

14

5. Выберите ОДНО из предложенных ниже заданий: 15.1 или 15.2.

 

15.1 Исполнитель Робот умеет перемещаться по лабиринту, начерченному на плоскости, разбитой на клетки. Между соседними (по сторонам) клетками может стоять стена, через которую Робот пройти не может.

У Робота есть девять команд. Четыре команды — это команды-приказы:

вверх вниз влево вправо

При выполнении любой из этих команд Робот перемещается на одну клетку соответственно: вверх ↑ вниз ↓, влево ← , вправо →. Если Робот получит команду передвижения сквозь стену, то он разрушится.

Также у Робота есть команда закрасить, при которой закрашивается клетка, в которой Робот находится в настоящий момент.

Ещё четыре команды —  это команды проверки условий. Эти команды проверяют, свободен ли путь для Робота в каждом из четырёх возможных направлений:

сверху свободно  снизу свободно  слева свободно  справа свободно

Эти команды можно использовать вместе с условием «если», имеющим следующий вид:

 

если условие то

последовательность команд

все

 

Здесь условие — одна из команд проверки условия. Последовательность команд — это одна или несколько любых команд-приказов. Например, для передвижения на одну клетку вправо, если справа нет стенки, и закрашивания клетки можно использовать такой алгоритм:

если справа свободно то

вправо

закрасить

все

 

В одном условии можно использовать несколько команд проверки условий, применяя логические связки и, или, не, например:

 

если (справа свободно) и (не снизу свободно) то

вправо

все

 

Для повторения последовательности команд можно использовать цикл «пока», имеющий следующий вид:

 

нц пока условие

последовательность команд

кц

 

Например, для движения вправо, пока это возможно, можно использовать следующий алгоритм:

 

нц пока справа свободно

вправо

кц

 

Выполните задание.

 

На бесконечном поле имеется горизонтальная стена. Длина стены неизвестна. Робот находится в одной из клеток непосредственно сверху от стены. Начальное положение Робота также неизвестно. Одно из возможных положений Робота приведено на рисунке (Робот обозначен буквой «Р»).

 

Напишите для Робота алгоритм, закрашивающий все клетки, расположенные выше стены и прилегающие к ней, независимо от размера стены и начального расположения Робота. Робот должен закрасить только клетки, удовлетворяющие данному условию. Например, для приведённого выше рисунка Робот должен закрасить следующие клетки (см. рисунок).

 

 

Конечное расположение Робота может быть произвольным. При исполнении алгоритма Робот не должен разрушиться. Алгоритм должен решать задачу для произвольного размера поля и любого допустимого расположения стен.

 

Алгоритм может быть выполнен в среде формального исполнителя или записан в текстовом редакторе.

 

 

 

 

 

 

 

15.2 Напишите программу для решения следующей задачи. Ученики 4 класса вели дневники наблюдения за погодой и ежедневно записывали дневную температуру. Найдите самую низкую температуру за время наблюдения. Если температура опускалась ниже –15 градусов, выведите YES, иначе выведите NO. Программа получает на вход количество дней, в течение которых проводилось измерение температуры N (1 ≤ N ≤ 31), затем для каждого дня вводится температура.

 

Пример работы программы:

 

Входные данныеВыходные данные

4

–5

12

–2

8

–5

NO

Комментариев нет:

Отправить комментарий